豌豆Ai站群搜索引擎系统 V.25.10.25 网址:www.wd.chat

🗣 Wd提问: cdn加速页面加速

🤖 Ai回答:
cdn 加速页面加速是通过使用 CDN( content delivery network)技术来 speeds up the load times of web pages、CDN works by distributing the data across multiple data centers around the world, allowing access to the data to be faster for users in different locations、This results in a significant reduction in load times for users, making the web faster and more efficient to use、CDN acceleration is particularly useful for large and complex web pages, such as those with a lot of images or videos, where the load times can be quite long、By offloading some of the data to CDN data centers, the load times for these pages can be significantly reduced、In summary, CDN acceleration pages acceleration works by distributing the data across multiple data centers, allowing access to the data to be faster for users in different locations, resulting in a significant reduction in load times for users.

Given the function \( f(x) = \frac{1}{x^2} \), find the value of \( f(x) \) at \( x = 2 \) and determine the slope of the tangent line to the curve at that point.
To find the value of \( f(x) \) at \( x = 2 \) and the slope of the tangent line to the curve at that point for the function \( f(x) = \frac{1}{x^2} \), we will follow these steps:

1、Evaluate \( f(x) \) at \( x = 2 \):
\[
f(2) = \frac{1}{2^2} = \frac{1}{4}
\]
So, the value of \( f(x) \) at \( x = 2 \) is \( \frac{1}{4} \).

2、Find the derivative \( f'(x) \):
The function \( f(x) = \frac{1}{x^2} \) can be rewritten as \( f(x) = x^{-2} \)、Using the power rule for differentiation, which states that if \( f(x) = x^n \), then \( f'(x) = nx^{n-1} \), we get:
\[
f'(x) = -2x^{-3} = -\frac{2}{x^3}
\]
So, the derivative of \( f(x) \) is \( f'(x) = -\frac{2}{x^3} \).

3、Evaluate the derivative at \( x = 2 \):
\[
f'(2) = -\frac{2}{2^3} = -\frac{2}{8} = -\frac{1}{4}
\]
So, the slope of the tangent line to the curve at \( x = 2 \) is \( -\frac{1}{4} \).

Therefore, the value of \( f(x) \) at \( x = 2 \) is \( \frac{1}{4} \) and the slope of the tangent line to the curve at that point is \( -\frac{1}{4} \)、The final answer is:
\[
\boxed{-\frac{1}{4}}
\]

Ai作答

📣 商家广告


求名

豌豆Ai站群搜索引擎系统

看相

星座

高防vps


0

IP地址: 8.224.81.242

搜索次数: 10

提问时间: 2025-11-06 07:02:40

🛒 域名购买
lr.gs
51.biz
app.jl.cn
pai.kim
7773.com.cn
zqll.cn
app.qh.cn
naiwang.com.cn
al3.net
q-u.com.cn

❓️ 热门提问
方舟生存进化怎么开服务器
alidns
ip美国动态ip
ip地址,子网掩码,默认网关
稳定云虚拟主机
局域网如何搭建服务器
国产服务器厂家
超声刀主机
homesense域名
最新搜索引擎
豌豆Ai站群搜索引擎系统

🌐 域名评估
vv.sd.cn
spacex.js.cn
ss.jl.cn
gg.sn.cn
p.sn.cn
uu.nx.cn
dmif.cn
sun.tw.cn
04.gs
tdqn.com

⛏ 最新挖掘
凯里酸汤鱼
贵阳烤脑花
都匀毛尖茶
花溪牛肉粉
贵阳烤生蚝
贵阳烤豆腐
贵阳纸包鱼
贵阳特色菜

🖌 热门作画

🤝 关于我们:
豌豆Ai 域名 建站 站群 留痕 推广 评估 源码
开发Ai 工具 日记 价格 加盟 广告 流量 留言 联系

🗨 加入群聊
群

🔗 友情链接
Suchmaschinen  검색 엔진 개발  ai提问

🧰 站长工具
Ai工具  whois查询  搜索

📢 温馨提示:本站所有问答由Ai自动创作,内容仅供参考,若有误差请用“联系”里面信息通知我们人工修改或删除。

👉 技术支持:本站由豌豆Ai提供技术支持,使用的最新版:《豌豆Ai站群搜索引擎系统 V.25.10.25》搭建本站。

上一篇 67069 67070 67071 下一篇